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CSGLM 

Introduction 
CSGLM is a procedure for regression analysis as well as analysis of variance and covariance 
based on complex samples.  

Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. Sampling design includes the sampling method, 
strata and clustering information, inclusion probabilities and the overall sampling weights.   

Sampling design specification for CSGLM may include up to three stages of sampling.  Any 
of the following general sampling methods may be assumed in the first stage: random 
sampling with replacement, random sampling without replacement and equal probabilities 
and random sampling without replacement and unequal probabilities. The first two sampling 
methods can also be specified for the second and the third sampling stage. 

Notations 
n  Total number of elements in the sample. 

p  Number of regression parameters in the model. 

Y  Dependent variable vector containing values niyi ,,1, �= . 

X  n x p design matrix. The rows correspond to the observations and the columns to 

the model parameters.  The ith row is nii ,,1, �=′x . 

W  Diagonal matrix with sampling weights niwi ,,1, �= on the diagonal. 

B  Vector of p unknown population parameters. 

N  Total number of elements in the population. 

Weights 

Overall weights specified for each ultimate element are processed as given. See “Complex 
Samples: Covariance Matrix of Total” (cs_covariance.pdf) for more information on weights 
and variance estimation methods. 
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Model Specification 

Let the linear model be specified by the equation XY +=  where Y is a vector of 

observed dependent variable values, X is the linear model design matrix, is a vector of 

model parameters and E is a vector of random errors with zero mean. Each column of the 
design matrix corresponds to a parameter in the model equation. Each parameter corresponds 
to one of the intercept, factor main effects, factor interaction effects, factor nested effects, 
covariate effects and factors by covariates interaction effects. For every factor effect level 
occurring in data there is a separate parameter. This results in an over-parametrized model. 

Estimation method 
Assuming that the entire finite population has been observed, we can obtain the least square 
parameter estimates for the linear model by solving the following normal equations 

NNNN YXXX ′=′  

where NX  and NY denote design matrix and dependent variable for all elements in the 

given population. A solution vector for this system, estimating the model parameters , is 

denoted by B .  In our analyses we take the established design-based approach concerned 
with estimating the finite population parameters B developed by Kish and Frankel (1974), 
Fuller (1975), Shah, Holt and Folsom (1977) and others. See Särndal et al. (1992) for an 
overview. 

Estimates for the population matrices NN XX′  and NN YX′  are given by WXX′  and 

WYX′ respectively.  We solve the following set of weighted normal equations 

WYXWXBX ′=′  

where W is a diagonal matrix with sampling weights niwi �1, = on the diagonal. A 

solution for B is then given by the equation  

WYXWX)X(B ′′= −ˆ  

where −′WX)X(  is a generalized g2 inverse of WXX′ . 

Predicted values and residuals 

Predicted values for each observation are given by Bx ˆˆ iiy ′= , where ix′  is the ith row of the 

design matrix X . Vector of residual r is defined with niyyr iii �,1,ˆ =−= . 

The residual sum of squares Wrr ′ is computed directly by the following: 
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Estimation algorithm 
Estimation begins by construction of the weighted sum-of-squares and crossed products 

(SSCP) matrix. Let ),( iii yxz ′=′ be the ith row of matrix Z , where ix′  is the ith row of 

design matrix X , and iy is the corresponding dependent variable value. Then the SSCP 

matrix is computed by 
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where iizz ′ is the outer product for the vector iz . 

This matrix can be partitioned as follows 
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After applying sweep operator to the first p  rows and columns of the matrix above, we 

obtain the following solution matrix  


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WrrB
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ˆ

ˆ
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−′WX)X(  is a generalized g2 inverse of WXX′ , B̂  is a parameter solution, and Wrr ′ is 

the residual sum of squares.  

When a column of WXX′ is found to be dependent on previous columns, the corresponding 
parameter is treated as redundant. Solution for redundant parameters is set to 0 as well as 

corresponding rows and columns in −′WX)X( .  

Variance estimates 
Variances of parameter estimates are computed according to the Taylor linearization method 
as presented by Binder (1983). 

 Define vector )ˆ( Bxxd iiii y ′−= for ni ,,1 �= and its total population estimate by 
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Let )d(V T
ˆˆ  be its sample design-based covariance matrix computed by the methods 

described in “Complex Samples: Covariance Matrix of Total” (cs_covariance.pdf). Then the 

covariance matrix of B̂ is estimated by 

−− ′′= WX)X)(d(VWX)X()B(V T
ˆˆˆˆ . 

Note: If any diagonal element of )d(V T
ˆˆ  happens to be non-positive due to the use of Yates-

Grundy-Sen estimator, all elements in the corresponding row and column are set to zero. 

Subpopulation estimates 

When analyses are requested for a given subpopulation S , we redefine ),( ′′ ii yx as follows: 





 ′=′
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�
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When computing point estimates, this substitution is equivalent to including only the 
subpopulation elements in the calculations. This is in contrast to computing the variance 
estimates where all elements in the sample need to be included. 

Standard Errors 

Let iB̂ denote a non-redundant parameter estimate. Its standard error is the square root of its 

estimated variance: 

)ˆ(ˆ)ˆ( ii BVBSE = . 

Standard error is undefined for redundant parameters. 

Degrees of freedom 
Number of the degrees of freedom ν  used for computing confidence intervals and test 
statistics below is calculated as the difference between the number of primary sampling units 
and the number of strata in the first stage of sampling. We shall also refer to this quantity as 
the sample design degrees of freedom. Alternatively, ν may be specified by the user. 

Confidence Intervals 

A level α−1  confidence interval is constructed for a given 10 ≤≤ α  for each non-

redundant model parameter iB̂ . Confidence bounds are given by 



CSGLM 

 

5 

)2/1()ˆ(ˆ αν −± tBSEB ii  

where )ˆ( iBSE  is the estimated standard error of iB̂ , and )2/1( αν −t  is the 

)21(100 α−  percentile of t distribution with ν degrees of freedom. 

t Tests 

Testing hypothesis 0ˆ:0 =ii BH  for each non-redundant model parameter iB̂  is performed 

using the t  test statistic: 

)ˆ(

ˆ
)ˆ(

i

i
i

BSE

B
Bt = . 

The p-value for the two-sided test is given by the probability |))ˆ(||(| iBtTP > , where T  is 

a random variable from the t  distribution with ν degrees of  freedom. 

Design  Effects 

Design effect )ˆ( iBDeff for non-redundant parameter estimate iB̂  is given by 

)B(V

)B(V
BDeff

isrs

i
i ˆˆ

ˆˆ
)ˆ( =  

Design effect is undefined for redundant parameters. 

)ˆ(ˆ
iBV  is the estimate of variance of iB̂  under the appropriate sampling design, while 

)ˆ(ˆ
isrs BV  is the estimate of variance of iB̂  under the simple random sampling assumption. 

The latter is computed as the ith diagonal element of the following matrix: 

iiTsrsisrs BV ]ˆˆ[)ˆ(ˆ −− ′′= WX)X)(d(VWX)X(  

where 
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with id  as specified earlier. 
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Design effects are undefined when 1
ˆ

≥
N

n
. 

For subpopulation analysis we have that 0d =i  whenever observation i does not belong to 

a given subpopulation. 

We also provide the square root of design effect Defft by computing 

DeffDefft = . 

Design effects and their application have been discussed by Kish (1965) and Kish (1995). 

Multiple R-square 
Multiple R-square is computed by the following formula 

)ˆ()ˆ(
12

1YW1Y

Wrr

SS YY
R

−′−

′
−=  

where SSS NYY ˆˆˆ =  is the estimated subpopulation mean for variable Y. 

 

If the specified model contains no intercept we use the following expression 

WYY
Wrr
′
′

−=12R . 

Hypothesis Testing 
Given matrix L  with r  rows and p columns, and vector K with r  elements, CSGLM 

performs testing of linear hypothesis KLB =:0H . It is necessary that LB is estimable. 

Wald 2Χ statistic is given by 

K)B(L)L)B(V(L)KB(L −′′−=Χ − ˆˆˆˆ2 . 

Asymptotic distribution of the 2Χ  test statistic is chi-square with Ir  degrees of freedom, 

where )ˆˆ( L)B(VL ′= rankrI . If rrI < , −′)L)B(V(L ˆˆ  is a generalized inverse such that 

Wald tests are effective for restricted set of hypothesis II KBL =  containing a particular 

subset I  of independent rows from 0H . 
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Each row il ′  of matrix L is also tested separately. Estimate for the ith row is given by 

B̂il ′ and its standard error by ii ll )B(V ˆˆ′  . 

See “Complex Samples: Model Testing” (cs_modeltesting.pdf) for additional tests and p-
value adjustments. 

Custom tests 

Custom hypothesis tests are conducted only when L is such that LB is estimable. This 
condition is verified using the following equality: 

WX)X(WX)XL(L ′′= − . 

Default tests of model effects 

For each effect specified in the model, Type III test L matrix is constructed such that LB is 
estimable. It involves parameters only for the given effect and the containing effects and it 
does not depend on the order of effects specified in the model. If such a matrix cannot be 
constructed, the effect is not testable. Matrix K is always set to 0 when computing the test 
statistics for model effects.  

Hypothesis for the corrected model is that all the parameters except for the intercept are zero. 

Estimated marginal means 
Estimated marginal means (EMMEANS) are based on the estimated cell means. For a given 
fixed set of factors, or their interactions, we estimate marginal means as the mean value 
averaged over all cells generated by the rest of the factors in the model. Covariates may be 
fixed at any specified value. If not specified, the value for each covariate is set to its overall 
mean estimate.  

When missing cells are present in the data, EMMEANS may not be estimable. In such 
circumstance, we provide a modified estimate proposed by Searle, Speed and Milliken 
(1980) that ignores the non-estimable cells. 

Each marginal estimate is finally constructed in the form B̂l ′  such that Bl ′ is estimable. 

Comparing EMMEANS 

For a given factor in the model, a vector of EMMEANS is created for all levels of the factor. 

This vector can be expressed in the form BL ˆˆ =  where each row of L matrix is generated 

as described above. Variance is then computed by the following formula: 

L)B(VL)(V ′= ˆˆˆˆ . 
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A set of contrasts for the factor is created according to the selected contrast type. Let this set 

of contrasts define the matrix C  used for testing the following hypothesis 0C =:0H . 

The Wald 2Χ statistic is used for testing given set of contrasts for the factor as follows:  

)(C)C)(V(C)(C ˆˆˆˆ2 −′′=Χ  

The asymptotic distribution of the 2Χ  test statistic is chi-square with Ir  degrees of freedom, 

where )ˆˆ( C)(VC ′= rankrI .  

Each row ic′  of matrix C  is also tested separately. The estimate for the ith row is given by 

ˆic′ and its standard error by ii cc )(V ˆˆ′  . 

See “Complex Samples: Model Testing” (cs_modeltesting.pdf) for additional tests and p-
value adjustments. Substitute the following formula for the simple random sampling 

covariance: L)B(VL)(V ′= ˆˆˆˆ
srssrs . 
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