CSGLM

Introduction

CSGLM is a procedure for regression analysis as well as analysis of variance and covariance
based on complex samples.

Complex sample data must contain both the values of the variables to be analyzed and the
information on the current sampling design. Sampling design includes the sampling method,
strata and clustering information, inclusion probabilities and the overall sampling weights.

Sampling design specification for CSGLM may include up to three stages of sampling. Any
of the following general sampling methods may be assumed in the first stage: random
sampling with replacement, random sampling without replacement and equal probabilities
and random sampling without replacement and unequal probabilities. The first two sampling
methods can a so be specified for the second and the third sampling stage.

Notations
n Total number of elementsin the sample.
p Number of regression parametersin the model.
Y Dependent variable vector containing values 'y, , i=1...,n.
X Nx P design matrix. The rows correspond to the observations and the columns to

Weights

the mode! parameters. Thei" row isx;,i =1,...,N.
w Diagonal matrix with sampling weightsw, , i =1,...,nonthe diagonal.
B Vector of P unknown population parameters.

N Total number of elementsin the population.

Overal weights specified for each ultimate element are processed as given. See “Complex
Samples: Covariance Matrix of Total” (cs_covariance.pdf) for more information on weights
and variance estimation methods.
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Model Specification

Let the linear model be specified by the equation Y = XB +E whereY is a vector of
observed dependent variable values, X is the linear model design matrix, P is a vector of

model parameters and E is a vector of random errors with zero mean. Each column of the
design matrix corresponds to a parameter in the model equation. Each parameter corresponds
to one of the intercept, factor main effects, factor interaction effects, factor nested effects,
covariate effects and factors by covariates interaction effects. For every factor effect level
occurring in datathere is a separate parameter. Thisresultsin an over-parametrized model.

Estimation method
Assuming that the entire finite population has been observed, we can obtain the least square
parameter estimates for the linear model by solving the following normal eguations

XX B =X\ Yy

where X, and Y denote design matrix and dependent variable for al elements in the
given population. A solution vector for this system, estimating the model parametersf , is

denoted by B . In our analyses we take the established design-based approach concerned
with estimating the finite population parameters B developed by Kish and Frankel (1974),
Fuller (1975), Shah, Holt and Folsom (1977) and others. See Sarndal et al. (1992) for an
overview.

Estimates for the population matrices X X, and XY, are given by X'WX and
X'WY respectively. We solve the following set of weighted normal equations

X'WXB = X'WY

where W is a diagonal matrix with sampling weights W, ,i =1...non the diagona. A
solution for B isthen given by the equation

B = (X'WX) X'WY
where(X'"WX)™ isageneralized g2 inverse of X'"WX .

Predicted values and residuals

Predicted values for each observation are given by § = X! B, where X! is the ™ row of the

design matrix X . Vector of residual I isdefinedwith r, =y, —V.,i =1,...n.

The residual sum of squares I "W is computed directly by the following:
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W= 5wy, -x/B)*.

Estimation algorithm

Estimation begins by construction of the weighted sum-of-squares and crossed products
(SSCP) matrix. Let Z; = (X}, Y;) be the i row of matrixZ , where X! is the i row of

design matrix X , and Y; is the corresponding dependent variable value. Then the SSCP
matrix is computed by

Z'WZ = Zwiziz{

where Z,Z; isthe outer product for the vector Z; .

This matrix can be partitioned as follows

, ‘WX X'WY
Z'WZ = @

‘WX Y'WY

After applying sweep operator to the first P rows and columns of the matrix above, we
obtain the following solution matrix

(X'WX)" B
B’ r'Wr

(X'WX)~ isageneralized g2 inverse of X'WX, B is a parameter solution, and I "WTr is
the residual sum of sguares.

When a column of X'W X isfound to be dependent on previous columns, the corresponding
parameter is treated as redundant. Solution for redundant parameters is set to 0 as well as

corresponding rows and columnsin (X"WX)~.

Variance estimates

Variances of parameter estimates are computed according to the Taylor linearization method
as presented by Binder (1983).

Definevector d; =X, (Y, —X;é) for i =1,...,nanditstotal population estimate by

aT = Z\Nixi(yi _Xi'é)'
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Let \7(6|T) be its sample design-based covariance matrix computed by the methods
described in “Complex Samples: Covariance Matrix of Total” (cs_covariance.pdf). Then the

covariance matrix of B is estimated by
V(B) = (X'WX)~V(d; )(X'WX) .

Note: If any diagonal element of \7(6|T) happens to be non-positive due to the use of Y ates-
Grundy-Sen estimator, al elementsin the corresponding row and column are set to zero.

Subpopulation estimates

When analyses are requested for a given subpopulation S, we redefine (X;, ;)" asfollows:

! yA)zgx;,yi) if the i elementisin S
e HO,...,0) otherwise

When computing point estimates, this substitution is equivalent to including only the
subpopulation elements in the calculations. This is in contrast to computing the variance
estimates where all elements in the sample need to be included.

Standard Errors

Let B, denote a non-redundant parameter estimate. Its standard error is the square root of its
estimated variance:

SE(B) = \V(B).

Standard error is undefined for redundant parameters.

Degrees of freedom

Number of the degrees of freedom V used for computing confidence intervals and test
statistics below is calculated as the difference between the number of primary sampling units
and the number of strata in the first stage of sampling. We shall also refer to this quantity as
the sample design degrees of freedom. Alternatively, ¥ may be specified by the user.

Confidence Intervals

A level 1—a confidence interval is constructed for a given O0<a <1 for each non-

redundant model parameter éi . Confidence bounds are given by
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B +SE(B)t, (1-a/2)

where SE(L%,) is the estimated standard error of Iéi, and t,(1—al2) is the
100(1—a/2) percentile of tdistribution with V degrees of freedom.

Testing hypothesis H; : I_Sii = 0 for each non-redundant model parameter I_szi is performed
using the t test statistic:

A

Bi
SE(B)

t(éi) =

The p-value for the two-sided test is given by the probability P(| T || t(|.3>i )|), where T is
arandom variable from the t distribution with U degrees of freedom.

Effects

Design effect Deff (I§>I ) for non-redundant parameter estimate éi is given by

Design effect is undefined for redundant parameters.

\7(L3>,) is the estimate of variance of I_szi under the appropriate sampling design, while
\7Srs (él ) isthe estimate of variance of éi under the ssimple random sampling assumption.
The latter is computed as the i diagonal element of the following matrix:

V,o(B) =[(X'WX) "V (d; )X'WX) ],

where

~ A n, N &

V.. (d)=01-—= —zwd-df
srs( T) ( N)n_1|: i

with d, as specified earlier.
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n
Design effects are undefined when— = 1.

For subpopulation analysis we have that di = 0 whenever observation | does not belong to
a given subpopulation.

We also provide the square root of design effect Defft by computing

Defft = \/Deff .

Design effects and their application have been discussed by Kish (1965) and Kish (1995).
Multiple R-square
Multiple R-square is computed by the following formula

r'Wr
(Y = Ys)'W(Y =Y, )

where 75 = YAS/ NS is the estimated subpopulation mean for variable Y.

If the specified model contains no intercept we use the following expression

R? =1 r'wWr
oYWy
Hypothesis Testing

Given matrix L with 1 rows and p columns, and vector K with I elements, CSGLM

performs testing of linear hypothesisH, : LB =K . It is necessary that L B is estimable.
Wald X 2 tatistic is given by

X% =(LB-K)'(LV(B)L") (LB -K).

Asymptotic distribution of the X? test statistic is chi-square with I, degrees of freedom,
wherer, = rank(L\7(I§)L'). Ifr, <r, (L\7(I§)L')_ is a generalized inverse such that
Wald tests are effective for restricted set of hypothesis L B =K', containing a particular
subset | of independent rowsfrom H,,.
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Each row Ii' of matrix L is also tested separately. Estimate for the i" row is given by

|!B and its standard error by /I V(B! .

See “Complex Samples. Model Testing” (cs_modeltesting.pdf) for additional tests and p-
value adjustments.

Custom tests

Custom hypothesis tests are conducted only when L is such that LB is estimable. This
condition is verified using the following equality:

L = L(X'WX) (X'WX).

Default tests of model effects

For each effect specified in the model, Type |11 test L matrix is constructed such that L B is
estimable. It involves parameters only for the given effect and the containing effects and it
does not depend on the order of effects specified in the model. If such a matrix cannot be
constructed, the effect is not testable. Matrix K is aways set to 0 when computing the test
statistics for model effects.

Hypothesis for the corrected model isthat al the parameters except for the intercept are zero.

Estimated marginal means

Estimated marginal means (EMMEANYS) are based on the estimated cell means. For a given
fixed set of factors, or their interactions, we estimate margina means as the mean value
averaged over al cells generated by the rest of the factors in the model. Covariates may be
fixed at any specified value. If not specified, the value for each covariate is set to its overall
mean estimate.

When missing cells are present in the data, EMMEANS may not be estimable. In such
circumstance, we provide a modified estimate proposed by Searle, Speed and Milliken
(1980) that ignores the non-estimable cells.

Each marginal estimateis finally constructed in the form I'B suchthat |'B is estimable.

Comparing EMMEANS

For a given factor in the model, a vector of EMMEANS is created for al levels of the factor.

This vector can be expressed in the form ft =L L3> where each row of L matrix is generated
as described above. Variance isthen computed by the following formula:

V() =LV(B)L'.
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A set of contrasts for the factor is created according to the selected contrast type. Let this set
of contrasts define the matrix C used for testing the following hypothesisH, : Cp =0.

TheWald X ?statistic is used for testi ng given set of contrasts for the factor as follows:

X* =(Cp)'(CV(R)C) (Cp)

The asymptotic distribution of the X 2 test tatistic is chi-square with I, degrees of freedom,
wherer, = rank(CV(j)C').

Each row Ci' of matrix C is also tested separately. The estimate for the i row is given by

C'pand its standard error by 4/ C;\?(ft)Ci :

See “Complex Samples; Model Testing” (cs_modeltesting.pdf) for additional tests and p-
value adjustments. Substitute the following formula for the simple random sampling

covariance: \A/Srs (p) = L\?srs(é)L "
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